Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artif Life ; : 1-18, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38048055

RESUMEN

A domain-independent problem-solving system based on principles of Artificial Life is introduced. In this system, DIAS, the input and output dimensions of the domain are laid out in a spatial medium. A population of actors, each seeing only part of this medium, solves problems collectively in it. The process is independent of the domain and can be implemented through different kinds of actors. Through a set of experiments on various problem domains, DIAS is shown able to solve problems with different dimensionality and complexity, to require no hyperparameter tuning for new problems, and to exhibit lifelong learning, that is, to adapt rapidly to run-time changes in the problem domain, and to do it better than a standard, noncollective approach. DIAS therefore demonstrates a role for ALife in building scalable, general, and adaptive problem-solving systems.

3.
Front Artif Intell ; 5: 733163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527795

RESUMEN

How are words connected to the thoughts they help to express? Recent brain imaging studies suggest that word representations are embodied in different neural systems through which the words are experienced. Building on this idea, embodied approaches such as the Concept Attribute Representations (CAR) theory represents concepts as a set of semantic features (attributes) mapped to different brain systems. An intriguing challenge to this theory is that people weigh concept attributes differently based on context, i.e., they construct meaning dynamically according to the combination of concepts that occur in the sentence. This research addresses this challenge through the Context-dEpendent meaning REpresentations in the BRAin (CEREBRA) neural network model. Based on changes in the brain images, CEREBRA quantifies the effect of sentence context on word meanings. Computational experiments demonstrated that words in different contexts have different representations, the changes observed in the concept attributes reveal unique conceptual combinations, and that the new representations are more similar to the other words in the sentence than to the original representations. Behavioral analysis further confirmed that the changes produced by CEREBRA are actionable knowledge that can be used to predict human responses. These experiments constitute a comprehensive evaluation of CEREBRA's context-based representations, showing that CARs can be dynamic and change based on context. Thus, CEREBRA is a useful tool for understanding how word meanings are represented in the brain, providing a framework for future interdisciplinary research on the mental lexicon.

4.
Neural Netw ; 148: 48-65, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35066417

RESUMEN

Recent studies have shown that the choice of activation function can significantly affect the performance of deep learning networks. However, the benefits of novel activation functions have been inconsistent and task dependent, and therefore the rectified linear unit (ReLU) is still the most commonly used. This paper proposes a technique for customizing activation functions automatically, resulting in reliable improvements in performance. Evolutionary search is used to discover the general form of the function, and gradient descent to optimize its parameters for different parts of the network and over the learning process. Experiments with four different neural network architectures on the CIFAR-10 and CIFAR-100 image classification datasets show that this approach is effective. It discovers both general activation functions and specialized functions for different architectures, consistently improving accuracy over ReLU and other activation functions by significant margins. The approach can therefore be used as an automated optimization step in applying deep learning to new tasks.


Asunto(s)
Evolución Biológica , Redes Neurales de la Computación
5.
Sci Rep ; 11(1): 10497, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006902

RESUMEN

Predicting language therapy outcomes in bilinguals with aphasia (BWA) remains challenging due to the multiple pre- and poststroke factors that determine the deficits and recovery of their two languages. Computational models that simulate language impairment and treatment outcomes in BWA can help predict therapy response and identify the optimal language for treatment. Here we used the BiLex computational model to simulate the behavioral profile of language deficits and treatment response of a retrospective sample of 13 Spanish-English BWA who received therapy in one of their languages. Specifically, we simulated their prestroke naming ability and poststroke naming impairment in each language, and their treatment response in the treated and the untreated language. BiLex predicted treatment effects accurately and robustly in the treated language and captured different degrees of cross-language generalization in the untreated language in BWA. Our cross-validation approach further demonstrated that BiLex generalizes to predict treatment response for patients whose data were not used in model training. These findings support the potential of BiLex to predict therapy outcomes for BWA and suggest that computational modeling may be helpful to guide individually tailored rehabilitation plans for this population.


Asunto(s)
Afasia/terapia , Multilingüismo , Red Nerviosa , Logopedia , Adulto , Anciano , Afasia/etiología , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones
6.
SN Comput Sci ; 2(3): 163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33778772

RESUMEN

The main power of artificial intelligence is not in modeling what we already know, but in creating solutions that are new. Such solutions exist in extremely large, high-dimensional, and complex search spaces. Population-based search techniques, i.e. variants of evolutionary computation, are well suited to finding them. These techniques make it possible to find creative solutions to practical problems in the real world, making creative AI through evolutionary computation the likely "next deep learning."

7.
IEEE Trans Evol Comput ; 25(2): 386-401, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36694708

RESUMEN

Several models have been developed to predict how the COVID-19 pandemic spreads, and how it could be contained with nonpharmaceutical interventions, such as social distancing restrictions and school and business closures. This article demonstrates how evolutionary AI can be used to facilitate the next step, i.e., determining most effective intervention strategies automatically. Through evolutionary surrogate-assisted prescription, it is possible to generate a large number of candidate strategies and evaluate them with predictive models. In principle, strategies can be customized for different countries and locales, and balance the need to contain the pandemic and the need to minimize their economic impact. Early experiments suggest that workplace and school restrictions are the most important and need to be designed carefully. They also demonstrate that results of lifting restrictions can be unreliable, and suggest creative ways in which restrictions can be implemented softly, e.g., by alternating them over time. As more data becomes available, the approach can be increasingly useful in dealing with COVID-19 as well as possible future pandemics.

8.
Artif Life ; 26(2): 274-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271631

RESUMEN

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Asunto(s)
Algoritmos , Biología Computacional , Creatividad , Vida , Evolución Biológica
9.
Brain Lang ; 195: 104643, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31247403

RESUMEN

Lexical access in bilinguals can be modulated by multiple factors in their individual language learning history. We developed the BiLex computational model to examine the effects of L2 age of acquisition, language use and exposure on lexical retrieval in bilingual speakers. Twenty-eight Spanish-English bilinguals and five monolinguals recruited to test and validate the model were evaluated in their picture naming skills in each language and filled out a language use questionnaire. We examined whether BiLex can (i) simulate their naming performance in each language while taking into account their L2 age of acquisition, use and exposure to each language, and (ii) predict naming performance in other participants not used in model training. Our findings showed that BiLex could accurately simulate naming performance in bilinguals, suggesting that differences in L2 age of acquisition, language use and exposure can account for individual differences in bilingual lexical access.


Asunto(s)
Simulación por Computador , Desarrollo del Lenguaje , Multilingüismo , Programación Neurolingüística , Humanos , Vocabulario
10.
PLoS One ; 14(4): e0213918, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30943244

RESUMEN

Food production in conventional agriculture faces numerous challenges such as reducing waste, meeting demand, maintaining flavor, and providing nutrition. Contained environments under artificial climate control, or cyber-agriculture, could in principle be used to meet many of these challenges. Through such environments, phenotypic expression of the plant-mass, edible yield, flavor, and nutrients-can be actuated through a "climate recipe," where light, water, nutrients, temperature, and other climate and ecological variables are optimized to achieve a desired result. This paper describes a method for doing this optimization for the desired result of flavor by combining cyber-agriculture, metabolomic phenotype (chemotype) measurements, and machine learning. In a pilot experiment, (1) environmental conditions, i.e. photoperiod and ultraviolet (UV) light (known to affect production of flavor-active molecules in edible plants) were applied under different regimes to basil plants (Ocimum basilicum) growing inside a hydroponic farm with an open-source design; (2) flavor-active volatile molecules were measured in each plant using gas chromatography-mass spectrometry (GC-MS); and (3) symbolic regression was used to construct a surrogate model of this chemistry from the input environmental variables, and this model was used to discover new combinations of photoperiod and UV light to increase this chemistry. These new combinations, or climate recipes, were then implemented in the hydroponic farm, and several of them resulted in a marked increase in volatiles over control. The process also led to two important insights: it demonstrated a "dilution effect", i.e. a negative correlation between weight and desirable chemical species, and it discovered the surprising effect that a 24-hour photoperiod of photosynthetic-active radiation, the equivalent of all-day light, induces the most flavor molecule production in basil. In this manner, surrogate optimization through machine learning can be used to discover effective recipes for cyber-agriculture that would be difficult and time-consuming to find using hand-designed experiments.


Asunto(s)
Agricultura/métodos , Cibernética/métodos , Ambiente Controlado , Ocimum basilicum/metabolismo , Hojas de la Planta/metabolismo , Aprendizaje Automático , Metabolómica , Proyectos Piloto , Proyectos de Investigación , Compuestos Orgánicos Volátiles/metabolismo
11.
Evol Comput ; 25(3): 503-528, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27700279

RESUMEN

No Free Lunch (NFL) theorems have been developed in many settings over the last two decades. Whereas NFL is known to be possible in any domain based on set-theoretic concepts, probabilistic versions of NFL are presently believed to be impossible in continuous domains. This article develops a new formalization of probabilistic NFL that is sufficiently expressive to prove the existence of NFL in large search domains, such as continuous spaces or function spaces. This formulation is arguably more complicated than its set-theoretic variants, mostly as a result of the numerous technical complications within probability theory itself. However, a probabilistic conceptualization of NFL is important because stochastic optimization methods inherently need to be evaluated probabilistically. Thus the present study fills an important gap in the study of performance of stochastic optimizers.


Asunto(s)
Algoritmos , Motor de Búsqueda/métodos , Programas Informáticos/normas , Simulación por Computador
12.
Behav Brain Sci ; 40: e205, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342660

RESUMEN

We strongly agree that general intelligence occurs in many animals but find the cultural intelligence hypothesis of limited usefulness. Any viable hypothesis explaining the evolution of general intelligence should be able to account for it in all species where it is known to occur, and should also predict the conditions under which we can develop machines with general intelligence as well.


Asunto(s)
Inteligencia , Animales
13.
IEEE Trans Comput Intell AI Games ; 8(1): 67-81, 2016 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-27030803

RESUMEN

Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

14.
Evol Comput ; 24(3): 459-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27027931

RESUMEN

Many challenging sequential decision-making problems require agents to master multiple tasks. For instance, game agents may need to gather resources, attack opponents, and defend against attacks. Learning algorithms can thus benefit from having separate policies for these tasks, and from knowing when each one is appropriate. How well this approach works depends on how tightly coupled the tasks are. Three cases are identified: Isolated tasks have distinct semantics and do not interact, interleaved tasks have distinct semantics but do interact, and blended tasks have regions where semantics from multiple tasks overlap. Learning across multiple tasks is studied in this article with Modular Multiobjective NEAT, a neuroevolution framework applied to three variants of the challenging Ms. Pac-Man video game. In the standard blended version of the game, a surprising, highly effective machine-discovered task division surpasses human-specified divisions, achieving the best scores to date in this game. In isolated and interleaved versions of the game, human-specified task divisions are also successful, though the best scores are surprisingly still achieved by machine discovery. Modular neuroevolution is thus shown to be capable of finding useful, unexpected task divisions better than those apparent to a human designer.


Asunto(s)
Evolución Biológica , Solución de Problemas , Inteligencia Artificial , Humanos , Aprendizaje , Cadenas de Markov , Análisis y Desempeño de Tareas , Juegos de Video
15.
PLoS One ; 10(8): e0132886, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266804

RESUMEN

Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.


Asunto(s)
Evolución Biológica , Extinción Biológica , Modelos Estadísticos , Adaptación Fisiológica , Animales , Simulación por Computador , Robótica/estadística & datos numéricos
16.
Front Hum Neurosci ; 9: 327, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106315

RESUMEN

Three-dimensional interactive virtual environments (VEs) are a powerful tool for brain-imaging based cognitive neuroscience that are presently under-utilized. This paper presents machine-learning based methods for identifying brain states induced by realistic VEs with improved accuracy as well as the capability for mapping their spatial topography on the neocortex. VEs provide the ability to study the brain under conditions closer to the environment in which humans evolved, and thus to probe deeper into the complexities of human cognition. As a test case, we designed a stimulus to reflect a military combat situation in the Middle East, motivated by the potential of using real-time functional magnetic resonance imaging (fMRI) in the treatment of post-traumatic stress disorder. Each subject experienced moving through the virtual town where they encountered 1-6 animated combatants at different locations, while fMRI data was collected. To analyze the data from what is, compared to most studies, more complex and less controlled stimuli, we employed statistical machine learning in the form of Multi-Voxel Pattern Analysis (MVPA) with special attention given to artificial Neural Networks (NN). Extensions to NN that exploit the block structure of the stimulus were developed to improve the accuracy of the classification, achieving performances from 58 to 93% (chance was 16.7%) with six subjects. This demonstrates that MVPA can decode a complex cognitive state, viewing a number of characters, in a dynamic virtual environment. To better understand the source of this information in the brain, a novel form of sensitivity analysis was developed to use NN to quantify the degree to which each voxel contributed to classification. Compared with maps produced by general linear models and the searchlight approach, these sensitivity maps revealed a more diverse pattern of information relevant to the classification of cognitive state.

17.
Neuroimage ; 114: 88-104, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25862265

RESUMEN

Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Meditación , Modelos Neurológicos , Tálamo/fisiología , Adulto , Ritmo alfa , Ritmo beta , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología
18.
Biling (Camb Engl) ; 16(2): 325-342, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24600315

RESUMEN

Current research on bilingual aphasia highlights the paucity in recommendations for optimal rehabilitation for bilingual aphasic patients (Roberts & Kiran, 2007; Edmonds & Kiran, 2006). In this paper, we have developed a computational model to simulate an English-Spanish bilingual language system in which language representations can vary by age of acquisition (AoA) and relative proficiency in the two languages to model individual participants. This model is subsequently lesioned by varying connection strengths between the semantic and phonological networks and retrained based on individual patient demographic information to evaluate whether or not the model's prediction of rehabilitation matched the actual treatment outcome. In most cases the model comes close to the target performance subsequent to language therapy in the language trained, indicating the validity of this model in simulating rehabilitation of naming impairment in bilingual aphasia. Additionally, the amount of cross-language transfer is limited both in the patient performance and in the model's predictions and is dependent on that specific patient's AoA, language exposure and language impairment. It also suggests how well alternative treatment scenarios would have fared, including some cases where the alternative would have done better. Overall, the study suggests how computational modeling could be used in the future to design customized treatment recipes that result in better recovery than is currently possible.

19.
Front Hum Neurosci ; 6: 256, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22973218

RESUMEN

The capacity to focus one's attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention (FA) meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG) data were collected during 6 min of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool (SMART), was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency (IAF) decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

20.
Biol Psychiatry ; 69(10): 997-1005, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21397213

RESUMEN

BACKGROUND: Various malfunctions involving working memory, semantics, prediction error, and dopamine neuromodulation have been hypothesized to cause disorganized speech and delusions in schizophrenia. Computational models may provide insights into why some mechanisms are unlikely, suggest alternative mechanisms, and tie together explanations of seemingly disparate symptoms and experimental findings. METHODS: Eight corresponding illness mechanisms were simulated in DISCERN, an artificial neural network model of narrative understanding and recall. For this study, DISCERN learned sets of autobiographical and impersonal crime stories with associated emotion coding. In addition, 20 healthy control subjects and 37 patients with schizophrenia or schizoaffective disorder matched for age, gender, and parental education were studied using a delayed story recall task. A goodness-of-fit analysis was performed to determine the mechanism best reproducing narrative breakdown profiles generated by healthy control subjects and patients with schizophrenia. Evidence of delusion-like narratives was sought in simulations best matching the narrative breakdown profile of patients. RESULTS: All mechanisms were equivalent in matching the narrative breakdown profile of healthy control subjects. However, exaggerated prediction-error signaling during consolidation of episodic memories, termed hyperlearning, was statistically superior to other mechanisms in matching the narrative breakdown profile of patients. These simulations also systematically confused autobiographical agents with impersonal crime story agents to model fixed, self-referential delusions. CONCLUSIONS: Findings suggest that exaggerated prediction-error signaling in schizophrenia intermingles and corrupts narrative memories when incorporated into long-term storage, thereby disrupting narrative language and producing fixed delusional narratives. If further validated by clinical studies, these computational patients could provide a platform for developing and testing novel treatments.


Asunto(s)
Trastornos del Conocimiento/etiología , Simulación por Computador , Modelos Biológicos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico , Adulto , Femenino , Humanos , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA